
CONVOLUTION KERNELS FOR CALCULATING

INTENSITY GRADIENTS IN DIGITAL IMAGES DERIVED

FROM SAMPLED FIRST-DERIVATIVE GAUSSIAN

FUNCTIONS

MATTI KARILUOMA

Abstract. This article demonstrates the use of particular convolution
kernels in accurately detecting the edge orientations in a digital image,
and shows a generalized method for finding such kernels.

1. Introduction

The problem we will explore concerns the detection of an edge’s direction
in digital images. We note that the edge of an object in a digital image
corresponds to an abrupt change in the intensity of nearby pixels. If we
consider a digital image as a two-dimensional signal of intensities, we can
instead find the derivative of this signal and search for local maximum of
this first-derivative signal; each local maxima will correspond to a point in
the image where an abrupt change of intensity occurs. Call this mapping of
change of intensities the image gradient .

Mapping the change of intensities is typically achieved through the convo-
lution of the image with some function kernel, a step edge operator . Canny
[2] concerned himself with the derivation of an optimal step edge operator;
he found that a first-derivative Gaussian function closely approximates his
optimal step edge operator.

However, the first-derivative Gaussian function is asymmetrical, and when
extended to two-dimensions, exhibits a directional component. In a two-
dimensional image, this is typically dealt with by calculating the gradients
in the directions θ = 0 and π

2 , then approximating the image gradient from
a combination (see Section 3.1) of these two directional estimates. [1] [3] [5]

This choice of directional kernels used to calculate the image gradient
will be the topic of this paper. We will discuss the motivation and criteria
for constructing such kernels in directions other than θ = 0 and π

2 , and in

particular we will construct kernels in the directions θ = π
8 ,

π
4 ,

3π
8 ,

5π
8 ,

3π
4 ,

and 7π
8 .

Date: May 10, 2010.
1991 Mathematics Subject Classification. Primary 94A08; Secondary 68U10.
Key words and phrases. image processing, computer vision, edge detection.

1

ROTATED FIRST-DERIVATIVE GAUSSIANS AS CONVOLUTION KERNELS 2

2. Definitions

Pixel A discrete element, p, representing a unit square with coloring.
Pixels of one-dimension are of the form p = {p0} where p0 ∈ N represents

the amount of white coloring in the pixel.
Pixels of three-dimensions are of the form p = {p1, p2, p3} where p1, p2, p3 ∈

N represent the amount of red, green, and blue coloring in the pixel.

Intensity A mapping Φ : p → N , defined by (where p is a pixel of n
dimensions):

Φ[p] =

⌊
1

n

n∑
i=0

pi

⌋
.

Image An image I is represented by an m× n matrix of pixels:

I =

p0,0 p0,1 ... p0,n
p1,0 p1,1 ... p1,n
...
pm,0 pm,1 ... pm,n

Noise In an image domain, noise is defined as variation from the true in-
tensity of an object in an image resulting from the addition of intensity from
sources not the object.

Convolution In an image domain, a convolution of the image I and a
discrete kernel function f is denoted by the operator ∗:

(I ∗ f)[x, y] =
∞∑

i=−∞

∞∑
j=−∞

f [i, j]I[x− i, y − j].

Note : I, f are usually represented as finite matrices, and f is often much
smaller than I.

We make convention here that f has an odd number of rows and an odd
number of columns, often a square matrix, with f [0, 0] the index of the
center element.

We make convention here that any undefined index of f is zero, and that
any undefined index of I takes the value of the nearest, or ”border”, value.

Intensity Gradient The rate of change of intensity in a given direction at
each pixel in the image I.

Each local maxima of an intensity gradient corresponds to a large change
in intensity near the pixel in a given direction and often indicate the edge
of some object.

3. Background

3.1. The Process of Edge Detection. We may consider edge detection
to be a three-step process:

• Reduce noise in the image in order to improve the validity of our
results.
• Calculate the intensity gradient of the image.

ROTATED FIRST-DERIVATIVE GAUSSIANS AS CONVOLUTION KERNELS 3

• Search the intensity gradient for local maxima.

Noise Reduction. The image must first have any noise reduced. We ex-
pect the distribution of noise throughout the image to follow the normal
distribution, therefore we convolve the image with a normalized Gaussian
function.

A discretized version of this Gaussian function is typically used to process
images. Since the Gaussian function rapidly approaches zero as we move
from the origin, we may sample the the Gaussian function at even intervals
and truncate the remaining values. Call this sampled, truncated Gaussian
function a discrete Gaussian kernel , usually represented as a square matrix.

This convolution with a Gaussian kernel reduces the effect that any er-
roneous pixels will have in the detection of local maxima in the intensity
gradient by averaging the intensity of each pixel dependent on the intensity
of neighboring pixels.

The standard deviation σ of the Gaussian function determines how quickly
the function approaches zero as we leave the origin, and therefore determines
the dimensions of the matrix representing our Gaussian kernel.

In Figure 1 we illustrate the convolution with a 3 × 3 Gaussian kernel
with σ = 1

2 .

1

94

 4 11 4
11 30 11
4 11 4

 ∗ I(1)

(a) A noisy photograph of
two square, white pillars.

(b) A Gaussian filter with
σ = 1

2
convolved with 1a.

Figure 1. The extraneous white marks (noise) in Figure
1a are almost completely removed by the convolution with a
small Gaussian filter in Figure 1b.

Intensity Gradient. The image gradient (IG) of our original image I is
typically estimated through the use of a first-order difference operator, such
as the Sobel operators [5]:

ROTATED FIRST-DERIVATIVE GAUSSIANS AS CONVOLUTION KERNELS 4

(a) A 3D representation of Figure 1a.

(b) A 3D representation of Figure 1b.

Figure 2. In the above graphs, the z-axis maps to the in-
tensity of the pixels. We can see how the convolution with a
Gaussian filter reduces ”false” local maxima.

IGx =

−1 0 1
−2 0 2
−1 0 1

 ∗ I and IGy =

 1 2 1
0 0 0
−1 −2 −1

 ∗ I

IG '

√(
∂

∂x
I

)2

+

(
∂

∂y
I

)2

(2)

'
√

(IGx)2 +
(
IGy
)2

(3)

where IGx corresponds to a step edge detector with θ = π
2 and IGy to θ = 0.

We can then estimate the gradient, θ, of a potential edge by considering
the values of both IGx and IGy at each pixel:

(4) θ = arctan

(
pGy
pGx

)
where pGy ∈ IGy and pGx ∈ IGx both occupy the same index as p ∈ I.

This use of a first-order difference operator leads to a great amount of
error [3] in the detection of a pixel’s gradient, and therefore only allows for
the accurate detection of gradients θ = {0, π4 ,

π
2 ,

3π
4 } [1].

ROTATED FIRST-DERIVATIVE GAUSSIANS AS CONVOLUTION KERNELS 5

Edge Detection. A typical algorithm [1] will search among the local max-
ima of gradients by using two threshold parameters to determine whether a
collection of local maxima is an actual edge or just noise in the image.

Any of the local maxima that are above the high threshold will be con-
sidered to correspond to edge pixels, a search is then carried out from these
selected pixels in the direction of their gradients.

Each pixel encountered that has the same gradient and is above the low
threshold is added to the edge. The search concludes when all local maxima
above the high threshold have been inspected.

3.2. First-Derivative Gaussian Functions. Kroon [3] has shown that
first-order difference operators, such as the Sobel operators (Section 3.1), are
unsuitable for accurately detecting the gradient of an edge. Kroon tested
various step edge operators, and found that two-dimensional first-derivative
Gaussian kernels outperformed other kernels.

Kroon considered two directions of n×n first-derivative Gaussian kernels
for θ = 0 and π

2 , and found that kernels with larger n performed best.

4. Rotated First-Derivative Gaussian Kernels

Without an accurate detection of gradient, the edge detection stage is
limited in directions of search. This affects not only the number of edges
found, but will also effect whether or not an edge is found as a whole or as
a collection of smaller edges.

We will expand the capacity of an edge detection algorithm to accurately
detect smaller graduations of angle through the use of kernels constructed
using a model of the two-dimensional first-derivative Gaussian function and
a coordinate system of unit squares.

Method. Say we have a two-dimensional grid of unit squares on a discrete-
valued Cartesian x, y plane. We define a two-dimensional first-derivative
Gaussian function on the continuous-valued coordinate system r, s such that
r = −s corresponds to a one-dimensional first-derivative Gaussian:

g′σ(r, s) := ∇gσ(r, s)(5)

=
∂

∂r
gσ(r, s) +

∂

∂s
gσ(r, s)(6)

= − r + s

σ3
√

2π
e−

r2+s2

2σ2(7)

We set our r, s coordinates such that its origin maps to the origin of the
x, y plane and the line r = 0 is rotated θ− 3π

4 from the line x = 0 . We then
sample our continuous function on r, s on the discrete x, y plane, represented
by a matrix. This matrix is our step edge operator for the chosen θ.

The utility of the two-dimensional first-derivative Gaussian function is
two-fold; not only does it follow Canny’s [2] optimal step edge detector when
r = −s, but it also takes into account neighboring pixels when r 6= −s.

ROTATED FIRST-DERIVATIVE GAUSSIANS AS CONVOLUTION KERNELS 6

Figure 3. A sketch of the r, s plane rotated θ− 3π
4 from the

x, y plane

In order to represent the r, s coordinates in terms of x and y coordinates,
we express the lines r = 0 and s = 0 as

r = 0 ⇒ y = tan

(
θ − 3π

4

)
x = cot

(π
4
− θ
)
x,(8)

s = 0 ⇒ y = − cot

(
θ − 3π

4

)
x = − tan

(π
4
− θ
)
x.(9)

We then calculate the shortest straight-line distance from each discrete
point of the x, y plane to the lines s = 0 and r = 0, thereby performing a
change of coordinates.

Given a point P (x, y) on the x, y plane we know the shortest straight
line distance between P and a line L to be the line that is orthogonal to L
and passes through P . Call this orthogonal line LT . Then it follows that
L · LT = 0, where · is the dot product of two vectors.

We can now derive an equation for determining the distance from a point
P (x, y) to a point Pr(xr, yr) on the line r = 0 and Ps(xs, ys) on the line
s = 0:

1(x− xr) + cot
(π

4
− θ
)

(y − yr) = 0,(10)

1(x− xs)− tan
(π

4
− θ
)

(y − ys) = 0(11)

ROTATED FIRST-DERIVATIVE GAUSSIANS AS CONVOLUTION KERNELS 7

but since we know that the point Ps lies on the line s = 0 and Pr lies on
r = 0 we have:

yr = cot
(π

4
− θ
)
xr,(12)

ys = − tan
(π

4
− θ
)
xs.(13)

1(x− xr) + cot
(π

4
− θ
)

(y − cot
(π

4
− θ
)
xr) = 0,

1(x− xs)− tan
(π

4
− θ
)

(y + tan
(π

4
− θ
)
xs) = 0

x+ cot
(π

4
− θ
)
y = xr + cot2

(π
4
− θ
)
xr,

x− tan
(π

4
− θ
)
y = xs + tan2

(π
4
− θ
)
xs

xr =
x+ cot

(
π
4 − θ

)
y

1 + cot2
(
π
4 − θ

) ,(14)

xs =
x− tan

(
π
4 − θ

)
y

1 + tan2
(
π
4 − θ

) .(15)

Then the shortest distance from any point P (a, b) to the line r = 0 is given
by

(16) |r| =
√

(x− xs)2 + (y − ys)2,
and, from P (a, b) to s = 0,

(17) |s| =
√

(x− xr)2 + (y − yr)2.

Figure 4. The points of intersection on s = 0 and r = 0,
and the distance to them from some point P (x, y).

ROTATED FIRST-DERIVATIVE GAUSSIANS AS CONVOLUTION KERNELS 8

Having found the magnitudes of r and s, it remains to calculate their
sign, and hence which quadrant of the r, s plane we are considering.

(18) r =

{
r if y > cot

(
π
4 − θ

)
x

−r otherwise.

(19) s =

{
s if y > − tan

(
π
4 − θ

)
x

−s otherwise.

We then evaluate g′σ at (r, s) and set this value to the index at (x, y) in
our matrix representation of our kernel.

4.1. Example Kernels.

Example Kernel for Edge Direction π
4 . With θ = π

4 we sample the first-
derivative Gaussian function on r, s to the x, y plane below and scale the
values to whole integers. The value of σ will determine the size of resulting
the matrix.

Here we choose σ = 5
6 , resulting in a a 5× 5 matrix:

1

562

0 −3 −8 −3 0
−1 −129 −259 0 1
−8 −259 0 259 8
−1 0 259 129 1
0 3 8 3 0

We can then flip this kernel (by exchanging the first, last rows and also

the second, fourth rows) to get an equivalently derived kernel for θ = 3π
4 :

1

562

0 3 8 3 0
−1 0 259 129 1
−8 −259 0 259 8
−1 −129 −259 0 1
0 −3 −8 −3 0

Example Kernel for Edge Direction π

8 . For θ = π
8 we illustrate a kernel

with σ = 2
5 , as a 5× 5 matrix:

1

576

−3 −27 −55 −23 −2
−17 −154 −287 −109 −8
−9 −49 0 49 9
8 109 287 154 17
2 23 55 27 3

We then flip the kernel in order to generate an equivalently derived kernel

for θ = 7π
8 :

ROTATED FIRST-DERIVATIVE GAUSSIANS AS CONVOLUTION KERNELS 9

1

576

2 23 55 27 3
8 109 287 154 17
−9 −49 0 49 9
−17 −154 −287 −109 −8
−3 −27 −55 −23 −2

Example Kernel for Edge Direction 3π

8 . For θ = 3π
8 we illustrate a

kernel with σ = 2
5 , as a 5× 5 matrix:

1

869

−5 −32 −78 3 2
−43 −262 −405 104 28
−32 −168 0 168 32
−28 −104 405 262 43
−2 −3 78 32 5

We then flip the kernel in order to generate an equivalently derived kernel

for θ = 5π
8 :

1

869

−2 −3 78 32 5
−28 −104 405 262 43
−32 −168 0 168 32
−43 −262 −405 104 28
−5 −32 −78 3 2

5. Comparison to Other Kernels

(a) (b) (c)

Figure 5. A synthetic image with edges of direction θ = π
4

and 3π
4 and the result of convolution the Sobel kernel in 5b,

and our kernel in 5c.

(a) (b) (c)

Figure 6. A synthetic image for θ = 3π
8 and 5π

8 . The con-
volution with the Sobel kernel (6b), and our kernel (6c).

ROTATED FIRST-DERIVATIVE GAUSSIANS AS CONVOLUTION KERNELS 10

Figure 7. A 3D intensity map of 5b

Figure 8. A 3D intensity map of 5c

ROTATED FIRST-DERIVATIVE GAUSSIANS AS CONVOLUTION KERNELS 11

Figure 9. A 3D intensity map of 6b

Figure 10. A 3D intensity map of 6c

6. Discussion

Summary. Our method has been shown to increase the detection of angu-
lar edges in digital images. This increased angular granularity allows us to
make better decisions about the composition of the edges in an image.

ROTATED FIRST-DERIVATIVE GAUSSIANS AS CONVOLUTION KERNELS 12

Further Work. The choice of σ for the first-derivative Gaussian function
was loosely guided; others [3] have employed numerical optimization tech-
niques in order to find an optimal σ. No such methods were employed here.
Variations in σ affect the relative weights of nearby to further pixels in our
kernels, the size of the kernel, and to a certain degree how well the overlying
Gaussian function is approximated.

We only considered a simple scheme for sampling the overlaying Gaussian
function. Other methods can be considered, including averaging the area of
the region near the sample point; another method for a discrete approxima-
tion of the Gaussian function, using integral Bessel functions, has been put
forth by Lindeberg [4].

For the purposes of algorithmic implementation, the number of different
kernels one must apply as well as the manner to interpret their output
remains to be explored. Such a decision will no doubt involve a discussion
of the number of kernels to consider, and hence the accuracy of the operation,
versus the time efficiency of such operations.

References

[1] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer Vision with the
OpenCV Library. O’Reilly, Cambridge, MA, 2008.

[2] F. John Canny. A Computational Approach to Edge Detection. 8(6):679–698, 1986.
[3] Dirk-Jan Kroon. Numerical optimization of kernel based image derivatives. Short Pa-

per, University of Twente, 2009.
[4] Tony Lindeberg. Scale-space for discrete signals. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 12:234–254, 1990.
[5] Irwin Sobel and Gary Feldman. A 3x3 isotropic gradient operator for image processing.

Presented at a talk at the Stanford Artificial Project, 1968.

Department of Mathematics, North Dakota State University, Fargo, North
Dakota

E-mail address: matti.m.kariluoma@ndsu.edu

mailto:matti.m.kariluoma@ndsu.edu

	1. Introduction
	2. Definitions
	3. Background
	3.1. The Process of Edge Detection
	Noise Reduction
	Intensity Gradient
	Edge Detection
	3.2. First-Derivative Gaussian Functions

	4. Rotated First-Derivative Gaussian Kernels
	Method
	4.1. Example Kernels
	Example Kernel for Edge Direction 4
	Example Kernel for Edge Direction 8
	Example Kernel for Edge Direction 38

	5. Comparison to Other Kernels
	6. Discussion
	Summary
	Further Work

	References

